1.3 PLANCK’S QUANTUM THEORY

In order to explain the distribution of energy in the spectrum of a black body, Max Planck
in 1900, put forward the quantum theory of radiation. He assumed that the atoms in the walls of
a black body behave like simple harmonic oscillators, and each has a characteristic frequency of
oscillation. In his theory he made the following two radical assumptions about the atomic oscil-
lators:

(1) A simple narmonic oscillator cannot have any arbitrary values of energy but only those
values of the total energy E that are given by the relation:
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E = nhy A1)
where 7= 0, 1.2, 3, ... s nis called the quantum number, v is the frequency of oscillation, and
h is a universal constant called Planck’s constant (h = 6.626 x 107** Js). In this relation hv is the
basic unit of energy and it is called a quantum of energy. Thus the relation shows that the total
energy of an oscillator is quantized.

(2) As long as the oscillator has energy equal to one, of the allowed values given by the
n:la-tion E = nhv, it cannot emit or absorb energy. Therefore, the oscillator is said to be in a
stationary state or a quantum state of energy. The emission or absorption of energy occurs only
when the oscillator jumps from one energy state to another. If the oscillator jumps down from a
higher energy state of quantum number n, to a lower energy state of quantum number n,, the
energy emitted is given by :

. E,~E =(n,—n)hv
if n, — n, = one unit, then
E,-E, =hy

Similarly, an oscillator absorbs a quantum hv of energy when it jumps up to its next higher
energy state.

According to Planck the quantum theory is applicable only to the process of emission and
absorption of radiant energy.

In 1905 Einstein extended Planck’s quantum theory by assuming that a monochromatic
radiation of frequency v consists of a stream of photons each of energy Av and the photons travel
through space with the speed of light.

Planck’s Radiation Law
On the basis of the quantum theory, Planck obtained the formula for an average energy of an
oscillator:
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It can be shown that the number of oscillations or degrees of freedom per unit volume in the
frequency range v and v + dv is given by :
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N(v)dv = 8“: dv 03
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where ¢ is the speed of light in vacuum.
Then assuming that the average value of the energies of the various modes of oscillation in

black body radiation is given by Eq. (2), Planck obtained the equation.

8mthv’ I ;
3 hET i (4)
¢ e |

U,dv =

where U,dv is the energy per unit volume in the frequency range v and v + dv and U, is the
energy per unit volume per unit frequency range at frequency v. In terms of the wavelength of the
radiation this equation 1s:
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Egs. (4) and (5) are two fo
When the values of U; as obtainec plotted against
the corresponding values of A we get curv ig. 1.3. These curves agree very well
with the experimental results @
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Fig. 1.3

Consequences of Planck's law
From Planck’s law in the form of Eq. (5) the Rayleigh -Jeans law, Wien's law and the Stefan
Boltzmann tormula are obtained as mathematical consequences:
(1) Rayleigh-Jeans law: For small values of he/AKT, i.e. in the region of long wavelengths,
the exponential term in Eq. (5) can be expanded and retaining only the first term, we get
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This is the Rayleigh-Jeans law.

(2) Wien's Radiation Formula: In the region of low wavelengths he/AkT becomes large.
Hence | in the denominator on the right hand side of Eq. (5) can be neglected in
comparison with the exponential term. Therefore, we get
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(3)Wien’s displacement law : From Planck’s radiation law, we have :
8the 1

Al constant temperature 7 of a black body, the wavelength A, at which the energy density
is maximum is given by :

dU,
—l, =0
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Taking logarithm of both the sides of Eq. (8), we have :
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log, U, = log, (8mhe)-5log, A - log, (e

Differentiating this equation with respect to A
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On solving this equation by trial and error method, we will get
x=49651 '
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(4) Stefan-Boltzmann Law. On the basis of the experimental data of Tyndol and of Duyjgp,
and Pelit, J. Stefan in 1879 deduced empirically that the total radiant energy of all wavelengh,
emitted per unit area per second by a heated body is proportional to the fourth power of j
absolute temperature. In 1884 Boltzmann derived the fourth power law by considering the black.
body radiation as the working substance for the ideal Carnot Cycle. He showed that the law i
strictly applicable to the radiation from a black body. The law is, therefore, generally called the
Stefan-Boltzmann Law. The law can be obtained directly from Planck’s radiation formula. The
derivation is as follows: '

The energy density of the total radiation of all wavelengths in a black body enclosure g
temperature 7" is given by : _
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or E =oT? 1 R21)
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where oc= 2k . (12)
15h°c*

Eq. (11) is the Stefan-Boltzmann law of radiation. The constant ¢ is called Stefan’s constant.
The experimental value of this constant 1s
o =5.67x10"W/m’K*.
When the value 5—579x10 8 W/m2K* (this was the value known at that time), k = 1.38

x 1072 J/K. ¢ = 3 x 10® m/s are substituted in Eq. (12), the value of A is found to be 6.57 x
10~3* Js. This was the first calculated value of h. The recent recommended value of A which is now

widely used is :

6.626x10 " Js |
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