
1.3 PLANCK'S QUANTUM THEORY 

In order to explain the distribution of energy in the spectrum of a black body, Max Planck 
in 1900, put forward the quantum theory of radiation. He assumed that the atoms in the walls of 
a black body behave like simple harmonic oscillators, and each has a characteristic frequency of 

oscillation. In his theory he made the following two radical assumptions about the atomic oscil. 
lators 

(1) A simple narmonic oscillator cannot have any arbitrary values of energy but only those 
values of the total energy E that are given by the relation:
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E = nhv .(1) 
where n= 0, 1, 2, 3, n is called the quantum number, v is the frequency of oscillation, and 

h is a universal constant called Planck's constant (h = 6.626 x 10 Js). In this relation hv is the 
basic unit of energy and it is called a quantum of energy. Thus the relation shows that the total 

energy of an oscillator is quantized. 

(2) As long as the oscillator has energy equal to one, of the allowed values given by the 

relation E= nhv, it cannot emit or absorb energy. Therefore, the oscillator is said to be in a 

stationary state or a quantum state of energy. The emission or absorption of energy occurs only 

when the oscillator jumps from one energy state to another. If the oscillator jumps down from a 

higher energy state of quantum number n, to a lower energy state of quantum number n1, the 

energy emitted is given by : 
E- E, = (n - n,) hv 

n2-n = one unit, then 

E-E=hv 
Similarly, an oscillator absorbs a quantum hv of energy when it jumps up to its next higher 

energy state. 
According to Planck the quantum theory is applicable only to the process of emission and 

absorption of radiant energy. 
In 1905 Einstein extended Planck's quantum theory by assuming that a monochromatic

radiation of frequency v consists of a stream of photons each of energy hv and the photons travel 

through space with the speed of light. 

Planck's Radiation Law 
On the basis of the quantum theory, Planck obtained the formula for an average energy of an 

oscillator:

hv 
E hv KT -1 

. (2) 

It can be shown that the number of oscillations or degrees of freedom per unit volume in the 

frequency range v andv+ dv is eiven by: 

N(V)dv= 
2 

81tVdy . (3) 

where c is the speed of light in vacuum. 
Then assuming that the average value of the energies of the various modes of oscillation in 

black body radiation is given by Eq. (2), Planck obtained the equation.

8Tthy3 
- dv Uydv= hv/kT 1 ..4) 

e 
where U,dv is the energy per unit volume in the frequency range v and v + dv and U, is the 

energy per unit volume per unit frequency range at frequency v. In terms of the wavelength of the 

radiation this equation is: 

87thc 

U,dh5 hc kT1 - da 
..5) 

Eqs. (4) and (5) are two forms of Planck's.radiation law. 

When the values of U as obtained from Eq. (5) for different values of A are plotted against 

the corresponding values of A we get curves as shown in Fig. 1.3. These curves agree very well 

with the experimental results over the whole range of wavelengths.
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Fig. 1.3 

Consequences of Planck's law 
From Planck's law in the form of Eq. (5) the Rayleigh -Jeans law, Wien's law and the Stefan- 

Boltzmann formula are obtained as mathematical consequences: 
(1) Rayleigh-Jeans law: For small values of hc/AkT, i.e. in the region of long wavelengths, 

the exponential term in Eq. (5) can be expanded and retaining only the first term, we get 

8tkT 
-dh 

8Tthc 
U, da dh-

hc/kT . (6) 
This is the Rayleigh-Jeans law. 

(2) Wien's Radiation Formula: In the region of low wavelengths hclAkT becomes large. 
Hence I in the denominator on the right hand side of Eq. (5) can be neglected in 
comparison with the exponential term. Therefore, we get 

87thc 
Uydh 

8Tdhc-hc/ AKT d 

It can be shown that for any black body, E is related to U at the same temperature by the 

equation 

Ex or U 

Now substituting for U in the above equation, we get 

dn-2nhe 2rhc-hc/ AKT d 

d .(7) 
where C 27thcand C, = hclk 

Eq. (7) is Wien's radiation formula 

vegn eane la 



Origin of the Quantum Theory 

(3)Wien's displacement law: From Planck's radiation law, we have: 

..8) 
87Tthc 

U 
helAAT-1 

At constant temperature T of a black body, the wavelength at which the energy density 

is maximum is given by 

dU = 0 

d m 
Taking logarithm of both the sides of Eq. (8), we have: 

log, U= log, (8rthc)-5log, - log, -1 

Differentiating this equation with respect to A 

hc 1 KT 
U d AT-1 

hc 1 dUa-0- heT 

hehelkT 

kTeAT-1 
dU-0 At n m 
dN 

-5+ Th/hmkT -| 
hc 

0 

hc 
= X, Let 

kT 

Xe - = 0 -5+- then 

xe 
- = 5 

or 
-1 

On solving this equation by trial and error method, we will get 

x = 4.9651 

hc 
= 4.9651 

i. kT 

hc 

4.9651xk 
6.62x10x3x10 6.62x3x10 

4.9651x 1.38x 10-23 
2.898x10 mK 

4.9651x 1.38 

This relation is Wien's displacement law. The law can be used to determine the temperature 

of a black body by determining the wavelength m at which the intensity of the radiation is 

maximum. 
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4) Stefan-Boltzmann Law. On the basis of the experimental data of Tyndol and of Dulono 

and Pelit, J. Stefan in 1879 deduced empirically that the total radiant energy of all wavelengthe 

emitted per unit area per second by a heated body is proportional to the fourth power of its 

absolute temperature. In 1884 Boltzmann derived the fourth power law by considering the black. 
body radiation as the working substance for the ideal Carnot Cycle. He showed that the law is 

strictly applicable to the radiation from a black body. The law is, therefore, generally called the 
Stefan-Boltzmann Law. The law can be obtained directly from Planck's radiation formula. The 

derivation is as follows: 
The energy density of the total radiation of all wavelengths in a black body enclosure at 

temperature T is given by: 

u-fu,dh=] 8Tthc 1 d 
a hcl AkT -1 

0 

hc 
Let x 

AkT 
hc 

kTx 

hcdx dh = 
kTx 

= 0, x = oo and when = o, X = 0 

and 

when 

Hence, 

d hc 

8k74 - dx 

h' -1 

87k*T 

The value of the integral is 
15 

k*T* n_4 2 k U= 
h'3 15 15 h2 

T4 .(8) 

It can be shown that for any black body the total radiation of all wavelengths emitted per
unit area per second at a given temperature, i.e. the total emissive power E is related to U at the 

same temperature by the equation: 

E- or U ...(9) 
4 C 

Substituting for U in Eq. (8), we get 

E-2x'4 
(I543|7 . (10) 
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E= oT (11) or 

4 

15h2 
where (12) 

Eq. (11) is the Stefan-Boltzmann law of radiation. The constant a is called Stefan's constant. 

The experimental value of this constant is 

g=5.67 x 108W/m?K 
When the value g= 5.79x 10S W/m2K (this was the value known at that time), k = 1.38 

x 1023 J/K, c = 3 x 10 m/s are substituted in Eq. (12), the value of h is found to be 6.57x 
1034 Js. This was the first calculated value of h. The recent recommended value of h which is now 

widely used is: 
6.626x 10Js 

this value of h is substituted in Eq. (5) for obtaining the values of U , it is found that the 

theoretical distribution curves agree excellently with the experimental curves over the whole 

range of wavelengths. 
The success of Planck's hypothesis in explaining the distribution of energy in the spectrum 

of black body was the beginning of quantum mechanics, We now describe some more important 
phenomena which are explained by this hypothesis. 
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